Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Purpose of Review: In this paper, we synthesize the status and trends of studies assessing the effects of landscape structure and changes on zoonotic and vector-borne disease risk in the Tropical America region (i.e., spanning from Mexico to southern South America). Understanding how landscape structure affects disease emergence is critical to designing prevention measures and maintaining healthy ecosystems for both animals and humans. Recent Findings: We found that there is a small number of articles being published each year regarding landscape structure and zoonotic and vector borne diseases in the Tropical Americas region, with a slight growing trend after 2013. We identified a large knowledge gap on the subject in most of the countries: in 15 of 27 countries, no article was found, and 72% of the current literature available is concentrated in only three countries (Brazil, Panama, and Colombia). Five diseases represent about 68% of the available knowledge, which compared to over 200 types of known zoonoses and vector-borne diseases, is an extremely low number. Most of the knowledge that exists for the region is about landscape composition, with few studies evaluating configuration parameters. Summary: In general, landscape changes presented a positive effect on zoonotic and disease risk in most of the studies found, with habitat loss, fragmentation and increases in the amount of edge habitats leading to an increased risk of the diseases investigated. The continued integration of landscape ecology into disease ecology studies can increase the knowledge about how land use change is affecting animals and human health and can allow the establishment of guidelines to create landscapes that have a low pathogenicity.more » « less
- 
            Did you know health is not just about not being sick? It is about feeling well. In healthy ecosystems, you can find plants, animals, water, rocks, and soil, all interacting with many microbes. Thanks to this biodiversity we have clean air, fresh water, and nutritious food. Bees and other animals pollinate flowers to help grow fruits and vegetables. Birds spread seeds that grow into trees and forests. Plants clean the air we breathe. And people feel better in nature. Healthy ecosystems, therefore, keep people healthy. While public health programs teach people about healthy food and give them access to medicines, people make ecosystems healthier by protecting nature. You can help too, by taking care of your health and your surrounding ecosystem, learning about the world, and supporting decisions and actions that protect nature and people. By becoming guardians of Earth’s biodiversity, we can all have a healthy future together.more » « less
- 
            The amphibian skin microbiome is an important component of anti-pathogen defense, but the impact of environmental change on the link between microbiome composition and host stress remains unclear. In this study, we used radiotelemetry and host translocation to track microbiome composition and function, pathogen infection, and host stress over time across natural movement paths for the forest-associated treefrog, Boana faber. We found a negative correlation between cortisol levels and putative microbiome function for frogs translocated to forest fragments, indicating strong integration of host stress response and anti-pathogen potential of the microbiome. Additionally, we observed a capacity for resilience (resistance to structural change and functional loss) in the amphibian skin microbiome, with maintenance of putative pathogen-inhibitory function despite major temporal shifts in microbiome composition. Although microbiome community composition did not return to baseline during the study period, the rate of microbiome change indicated that forest fragmentation had more pronounced effects on microbiome composition than translocation alone. Our findings reveal associations between stress hormones and host microbiome defenses, with implications for resilience of amphibians and their associated microbes facing accelerated tropical deforestation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
